Projects See all
DockIns: Machine Learning on Deadline for Journalists
Latest Articles See all

Dockins: machine learning para periodistas
El acceso a la información pública tiene un rol fundamental en la exigibilidad de otros derechos y es una de las herramientas principales que la sociedad civil requiere para controlar e influir en los gobiernos.

Reconocimiento de Entidades (NER) sobre textos en español
Como periodistas trabajando con documentos y bases de datos, nos encontramos con que la información más interesante se oculta en aquellos documentos que son largos, no estructurados o incompletos.

DockIns: Machine Learning on Deadline for Journalists
La Nacion, CLIP, Ojo Público, and MuckRock collaborated together to explore how machine learning could help fuel more effective ways for journalists, researchers, and the public to keep an eye on large government document sets. Here’s what we learned and how you can build on that work.

Testing two Named Entity Recognition models on Spanish documents
As journalists dealing with data and document sets, we find that the most interesting information is usually hidden in large, unstructured, and incomplete sets of documents. Especially information in public contracts: what the government is buying, how much money is being spent, and who are the suppliers. To answer these questions, four media organizations joined forces under the JournalismAI Collab and experimented with different machine learning tools and techniques in order to build a platform that helps investigative reporters understand and process unstructured documents to get useful insights. This platform ended up being “Dockins”.